Percolation transitions in partially edge-coupled interdependent networks with different group size distributions

Author:

Zhang Junjie1ORCID,Liu Caixia2ORCID,Liu Shuxin1ORCID,Li HaiTao1ORCID,Wu Lan1ORCID

Affiliation:

1. Institute of Information Technology, PLA Strategic Support Force Information Engineering University, Zhengzhou 450000, P. R. China

2. Institute of System Engineering, Academy of Military Sciences, Beijing 100091, P. R. China

Abstract

In many systems, from brain neural networks to epidemic transmission networks, pairwise interactions are insufficient to express complex relationships. Nodes sometimes cooperate and form groups to increase their robustness to risks, and each such group can be considered a “supernode”. Furthermore, previous studies of cascading failures in interdependent networks have typically concentrated on node coupling connections; however, in many realistic scenarios, interactions occur between the edges connecting nodes rather than between the nodes themselves. Networks of this type are called edge-coupled interdependent networks. To better reflect complex networks in the real world, in this paper, we construct a theoretical model of a two-layer partially edge-coupled interdependent network with groups, where all nodes in the same group are functionally dependent on each other. We identify several types of phase transitions, namely, discontinuous, hybrid and continuous, which are determined by the strength of the dependency and the distribution of the supernodes. We first apply our developed mathematical framework to ErdsRnyi and scale-free partially edge-coupled interdependent networks with equally sized groups to analytically and numerically calculate the phase transition thresholds and the critical dependency strengths that distinguish different types of transitions. We then investigate the influence of the group size distribution on cascading failures by presenting examples of two different heterogeneous group size distributions. Our theoretical predictions and numerical findings are in close agreement, demonstrating that decreasing the dependency strength and increasing group size heterogeneity can increase the robustness of interdependent networks. Our results have significant implications for the design and optimization of network security and fill a knowledge gap in the robustness of partially edge-coupled interdependent networks with different group size distributions.

Funder

Program of Song Shan Laboratory

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3