CRITICAL DYNAMICS IN THE 3D SPIN-1/2 HEISENBERG MODEL: A DECOUPLED CELL MONTE CARLO STUDY
-
Published:1996-06
Issue:03
Volume:07
Page:441-447
-
ISSN:0129-1831
-
Container-title:International Journal of Modern Physics C
-
language:en
-
Short-container-title:Int. J. Mod. Phys. C
Affiliation:
1. Department of Chemistry and Physics, Louisiana State University in Shreveport, Shreveport, Louisiana 71115, USA
Abstract
The three-dimensional spin-1/2 Heisenberg model on a simple cubic lattice is studied for ferromagnetic and antiferromagnetic interactions using the Decoupled Cell Method for quantum Monte Carlo. Results for the relaxation time τL are determined for both ferromagnetic and antiferromagnetic systems and found to be similar to those found for the classical (s → ∞) Heisenberg model. The scaling of τL with system size is used to extract the dynamical critical exponent z for the two systems. The values of z = 1.98 ± 0.12 for the ferromagnet and z = 1.94 ± 0.09 for the antiferromagnet are in good agreement with theoretical predictions and previous Monte Carlo studies of the classical Heisenberg model.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献