Parallel unstructured finite volume lattice Boltzmann method for high-speed viscid compressible flows

Author:

Liu Zhixiang1,Chen Rongliang2,Xu Lei1

Affiliation:

1. College of Information Technology, Shanghai Ocean University, Shanghai 201306, P. R. China

2. Research Center for Science and Engineering Computation, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China

Abstract

Based on the double distribution function Boltzmann-BGK equations, a cell-centered finite volume lattice Boltzmann method on unstructured grids for high-speed viscid compressible flows is presented. In the equations, the particle distribution function is introduced on the basis of the D2Q17 circular function, and its corresponding total energy distribution function is adopted. In the proposed method, the advective term is evaluated by Roe’s flux-difference splitting scheme, and a limiter is used to prevent the generation of oscillations. The distribution functions on the interface are calculated by piecewise linear reconstruction, in which the gradient is computed by the least-squares approach. In order to do large-scale simulations, a parallel algorithm is illustrated. The present method is validated by a flow around the NACA0012 airfoil and a flow past a circular cylinder at high Mach numbers. The results agree well with the published results, which demonstrate that the present method is an efficient numerical method for high-speed viscid compressible flows. The parallel performance results show that the proposed parallel algorithm achieves 90% parallel efficiency on 4800 cores for a problem with [Formula: see text] unstructured triangle cells, which shows the potential to perform fast and high-fidelity simulations of large-scale high-speed viscid compressible flows in complicated computational domains.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3