Affiliation:
1. Institute of Mathematics and Computer Science, University of Latvia, 29 Rainja Boulevard, LV–1459 Riga, Latvia
Abstract
Transfer matrix calculations of the critical two-point correlation function in 2D Ising model on a finite-size [Formula: see text] lattice with periodic boundaries along 〈11〉 direction are extended to L = 21. A refined analysis of the correlation function in 〈10〉 crystallographic direction at the distance r = L indicates the existence of a nontrivial finite-size correction of a very small amplitude with correction-to-scaling exponent ω < 2 in agreement with our foregoing study for L ≤ 20. Here we provide an additional evidence and show that amplitude a of the multiplicative correction term 1 + aL-ωis about -3.5·10-8if ω = 1/4 (the expected value). We calculate also the susceptibility for L ≤ 18 in order to compare our numerical estimates for the constant background contribution with the known very precise value and to look for possible nontrivial corrections to scaling. The numerical analysis reveals a perfect agreement for the background term, as well as shows that the nontrivial correction term, detected by our analysis in the correlation function, likely cancels in the susceptibility.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献