Affiliation:
1. Helsinki University of Technology, Laboratory of Computational Engineering, P. O. Box 9400, FIN-02015 HUT, Finland
Abstract
In this work the motion of a single dislocation in a two-dimensional triangular lattice is studied by using classical Molecular Dynamics method with the Lennard–Jones inter-atomic potential. The dislocation motion is investigated with an interactive simulation program developed to track automatically the movement of lattice defects. Constant strain and constant strain-rate deformations were applied to the system. From constant strain simulations a curve of shear stress versus dislocation velocity is obtained, showing a nonlinear power law relation. An equation of motion for the dislocation is proposed and found to be applicable when the movement of dislocation follows a quasi-static process. Numerical simulations at different strain rates show an elastic-to-plastic transition that modifies the dynamics of the dislocation motion.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献