A STUDY ON CORRELATION MOMENTS OF TWO-PHASE FLUCTUATING VELOCITY USING DIRECT NUMERICAL SIMULATION

Author:

WANG BING1,WEI WEI1,ZHANG HUIQIANG1

Affiliation:

1. School of Aerospace, Tsinghua University, Beijing 100094, P. R. China

Abstract

Existing models of two-phase fluctuating velocity correlation moments are unsatisfactory because of their inability to clearly identify the dependency of two-phase velocity covariance on fluid- and particle-phase velocity second moments. This is especially true of wall-bounded turbulent flows. In this paper, the statistical fluctuating velocity of both phases in particle-laden turbulent channel flows were obtained numerically by means of direct numerical simulation (DNS) coupled to the Lagrangian particle trajectory method. The effects of particle Stokes number on the scaling of two-phase fluctuating velocity correlation moments were analyzed considering effects of flow inhomogeneity. An improved two-phase correlation closure model of exponential decay with emphasis on the particle-phase kinetic energy was then proposed based on the results of an evaluation of five existing models. This new model was found to be better than previous models, which used local equilibrium assumption. The present investigations may facilitate understanding of two-phase flow physics and the construction of models capable of predicting the movements of particle-laden turbulent flows accurately using Reynolds-averaged Navier–Stokes (RANS) methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3