Synchronization of cooperative and competitive oscillators in dynamical network

Author:

Ling Xiang12,Hua Bo1,Jing Xing-Li3,Guo Ning12,Li Ling-Lin12,Zhu Kong-Jin12,Chen Jia-Jia12

Affiliation:

1. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, P. R. China

2. Engineering Research Center for Intelligent Transportation and Cooperative, Vehicle-Infrastructure of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China

3. Jiyuan Vocational and Technical College, Jiyuan 459000, P. R. China

Abstract

Synchronization is a collective behavior that occurs spontaneously, describing the coherence of a collection of dynamic units of a system. The competitive and cooperative behavior of the synchronization process as the simplest synergistic behaviors can promote or inhibit each other, which has been widely investigated for its practical significance in recent years. Here, we report that the synchronization phase transition type can be tuned by adjusting the balance between the two oscillator types and the communication radius of the dynamical network in a population dynamical network with uniformly distributed competitive and cooperative oscillators. Agents of both cooperative and competitive oscillators move and interact only with their neighbors in a system. By numerical simulations, we demonstrate a rich process of synchronous transitions, especially that the transition can be regulated between continuous and explosive by adjusting the balance between the two oscillator types under a specific dynamic network. Moreover, the communication radius of the network and the number of oscillators determine both the density of oscillators in the system, thus changing the connectivity and the synchronization characteristics of the network.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3