A two-fluid model for gas-particle turbulent flows based on the probability density function approach

Author:

Wang Lu1,Xu Jiangrong1

Affiliation:

1. Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, P. R. China

Abstract

According to experimental observations, laden particles in turbulence may attenuate or augment the carrier phase turbulence. But until now, there are no widely recognized models for estimating the so-called turbulence modulation phenomenon. In this paper, a novel two-fluid model is proposed based on the probability density function (PDF) approach. The Reynolds stress equation of the present model contains both production and dissipation terms due to the presence of particles, the turbulence modulation phenomenon can be well explained with the new model. To further explore the two-fluid model, a comparative study on PDF and Reynolds-averaged approaches is carried on, the differences and relations between the present model and the classical two-fluid Reynolds averaged Navier–Stokes (RANS) model are analyzed in the paper. Theoretical and numerical analysis indicates that the proposed model shows particular promise for predicting particle-laden turbulent flows.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3