Multiscale community estimation based on temporary local balancing strategy

Author:

Zhou Qiang1,Cai Shi-Min123,Zhang Yi-Cheng24

Affiliation:

1. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

2. Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

3. Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

4. Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland

Abstract

Community division in complex networks has become one of the hot topics in the field of network science. Most of the methods developed based on network topology ignore the dynamic characteristics underlying the structure. By exploring the diffusion process in the network based on random walk, this paper sums up the general rule with temporal characteristics as a temporary local balancing strategy which can be used in the community division. The strategy divides the network into different communities according to the duration of a stable local balancing state in the diffusion process. The longer the duration, the more stable the structure of the community in that state. Applying the strategy to computer-generated and real-world networks, respectively, it is proved that these temporary local balancing states existing in the diffusion process can reveal the internal community structure of the network. In addition, the modular structure appears at different time scales of diffusion process, similar to the hierarchical organization, and also provides a new perspective for multiscale network community detection.

Funder

the National Natural Science Foundation of China

the Science Promotion Programme of UESTC, China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3