HIGH-ORDER LATTICE-BOLTZMANN EQUATIONS AND STENCILS FOR MULTIPHASE MODELS

Author:

MATTILA KEIJO K.1,SIEBERT DIOGO N.2,HEGELE LUIZ A.2,PHILIPPI PAULO C.1

Affiliation:

1. Laboratory of Porous Media and Thermophysical Properties, Mechanical Engineering Department, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil

2. Department of Petroleum Engineering, State University of Santa Catarina, 88330-668 Balneário Camboriú, SC, Brazil

Abstract

The lattice Boltzmann (LB) method, based on mesoscopic modeling of transport phenomena, appears to be an attractive alternative for the simulation of complex fluid flows. Examples of such complex dynamics are multiphase and multicomponent flows for which several LB models have already been proposed. However, due to theoretical or numerical reasons, some of these models may require application of high-order lattice-Boltzmann equations (LBEs) and stencils. Here, we will present a derivation of LBEs from the discrete-velocity Boltzmann equation (DVBE). By using the method of characteristics, high-order accurate equations are conveniently formulated with standard numerical methods for ordinary differential equations (ODEs). In particular, we will derive implicit LB schemes due to their stability properties. A simple algorithm is presented which enables implementation of the implicit schemes without resorting to, e.g. change of variables. Finally, some numerical experiments with high-order equations and stencils together with two specific multiphase models are presented.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3