Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method

Author:

Ma Yuan12,Mohebbi Rasul3,Rashidi M. M.4,Yang Zhigang12

Affiliation:

1. Shanghai Automotive Wind Tunnel Center, Tongji University, No. 4800, Cao’an Road, Shanghai 201804, P. R. China

2. Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, No. 4800, Cao’an Road, Shanghai 201804, P. R. China

3. School of Engineering, Damghan University, P. O. Box 3671641167, Damghan, Iran

4. Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham, UK

Abstract

A numerical investigation is carried out to analyze the flow patterns, drag and lift coefficients, and vortex shedding around a square cylinder using a control circular bar upstream and downstream. Lattice Boltzmann method (LBM) was used to investigate flow over a square cylinder controlled by upstream and downstream circular bar, which is the main novelty of this study. Compared with those available results in the literature, the code for flow over a single square cylinder proves valid. The Reynolds number (Re) based on the width of the square cylinder ([Formula: see text]) and diameter of circular bar ([Formula: see text]) are 100 for square cylinder, 30 and 50 for different circular bars. Numerical simulations are performed in the ranges of [Formula: see text] and [Formula: see text], where [Formula: see text] and [Formula: see text] are the center-to-center distances between the bar and cylinder. Five distinct flow patterns are observed in the present study. It is found that the maximum percentage reduction in drag coefficient is 59.86% by upstream control bar, and the maximum percentage reduction in r.m.s. lift coefficient is 73.69% by downstream control bar. By varying the distance ratio for the downstream control bar, a critical value of distance ratio is found where there are two domain frequencies.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3