Affiliation:
1. Department of Physics, University of Illinois at Chicago, USA
Abstract
Although it is undecidable whether a one-dimensional cellular automaton obeys a given conservation law over its limit set, it is however possible to obtain sufficient conditions to be satisfied by a one-dimensional cellular automaton to be eventually number-conserving. We present a preliminary study of two-input one-dimensional cellular automaton rules called eventually number-conserving cellular automaton rules whose limit sets, reached after a number of time steps of the order of the cellular automaton size, consist of states having a constant number of active sites. In particular, we show how to find rules having given limit sets satisfying a conservation rule. Viewed as models of systems of interacting particles, these rules obey a kind of Darwinian principle by either annihilating unnecessary particles or creating necessary ones.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献