A hybrid model of neural network with VMD–CNN–GRU for traffic flow prediction

Author:

Huang Xiaoting1,Ma Changxi1,Zhao Yongpeng1,Wang Ke1,Meng Wei2

Affiliation:

1. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China

2. Gansu Longyuan Information Technology Co., Ltd., Lanzhou, P. R. China

Abstract

An effective traffic flow prediction can serve as a foundation for control decisions on intelligent transportation. However, in view of the nonstationarity and complexity of traffic flow sequences, it is impossible to fully extract the dynamic change laws of time-series based on traditional forecasting models. Traffic flow data are often disturbed by noise during the collection. The existence of noise data may affect the features of the sequence itself or cover the real change trend of the series, resulting in the decline of prediction reliability. A hybrid prediction model based on variational mode decomposition–convolutional neural network–gated recurrent unit (VMD–CNN–GRU) is presented to increase the predictability of traffic flow, which is combined by VMD, CNN and GRU. First, the original time-series is decomposed into K components by VMD, and the noise part is eliminated to improve the modeling accuracy. Next, the time characteristics of traffic flow are mined by constructing the CNN–GRU network in Keras, a deep learning framework. Each sub-sequence is trained and predicted separately as an input vector. The total expected value of traffic flow is then calculated by superimposing the predicted value of each subsequence. The model performance is verified by the open-source dataset of actual England highways. The results show that compared with other models, the hybrid model established in this paper significantly raises the precision of traffic flow forecasting. The results could offer some useful insights for predicting traffic flow.

Funder

Natural Science Foundation of China

Key Research and Development Project of Gansu Province

Soft Science Special Project of Gansu Basic Research Plan

Gansu Provincial Science and Technology Major Special Project - Enterprise Innovation Consortium

Lanzhou Jiaotong University Basic Research Top Talents Training

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3