A MATHEMATICAL DESCRIPTION OF THE CRITICAL POINT IN PHASE TRANSITIONS

Author:

BILGE AYSE HUMEYRA1,PEKCAN ONDER1

Affiliation:

1. Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey

Abstract

Let y(x) be a smooth sigmoidal curve, y(n) be its nth derivative and {xm,i} and {xa,i}, i = 1,2,…, be the set of points where respectively the derivatives of odd and even order reach their extreme values. We argue that if the sigmoidal curve y(x) represents a phase transition, then the sequences {xm,i} and {xa,i} are both convergent and they have a common limit xc that we characterize as the critical point of the phase transition. In this study, we examine the logistic growth curve and the Susceptible-Infected-Removed (SIR) epidemic model as typical examples of symmetrical and asymmetrical transition curves. Numerical computations indicate that the critical point of the logistic growth curve that is symmetrical about the point (x0, y0) is always the point (x0, y0) but the critical point of the asymmetrical SIR model depends on the system parameters. We use the description of the sol–gel phase transition of polyacrylamide-sodium alginate (SA) composite (with low SA concentrations) in terms of the SIR epidemic model, to compare the location of the critical point as described above with the "gel point" determined by independent experiments. We show that the critical point tc is located in between the zero of the third derivative ta and the inflection point tm of the transition curve and as the strength of activation (measured by the parameter k/η of the SIR model) increases, the phase transition occurs earlier in time and the critical point, tc, moves toward ta.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3