FIRST-PRINCIPLES CALCULATIONS FOR THE STRUCTURAL AND ELECTRONIC PROPERTIES OF ScxAl1-xN ALLOYS

Author:

MOHAMMAD REZEK1,KATIRCIOĞLU ŞENAY2

Affiliation:

1. Applied Science College, Palestine Technical University, WestBank, Palestine

2. Department of Physics, Middle East Technical University, 06800 Ankara, Turkey

Abstract

The first-principles calculations based on Density Functional Theory (DFT) within generalized gradient approximation (GGA) of Engel–Vosko–Perdew–Wang and modified exact exchange potential of Becke–Johnson have been introduced for the structural and electronic properties of the Sc x Al 1-x N alloys, respectively. The present lattice constants calculated for the ScAlN alloys and the end compounds ( AlN and ScN ) are found to be in very good agreement with the available experimental and theoretical ones. The stable ground state structures of the Sc x Al 1-x N alloys are determined to be wurtzite for the Sc concentration less than ~0.403 and rock-salt for the higher Sc concentrations. The present electronic band structure calculations within Becke–Johnson scheme are found to be capable of providing energy band gaps of the AlN and ScN compounds very close to the ones of the available experiments and expensive calculations. According to the calculations of Becke–Johnson potential, the Sc x Al 1-x N alloys in the wurtzite and zinc-blende structures are direct band gap materials for the Sc concentrations in the ranges of (0.056 ≤ x ≤ 0.833) and (0.03125 ≤ x ≤ 0.0625, 0.375 ≤ x ≤ 0.96875), respectively. However, the ScAlN alloys in the rock-salt phase are determined to be direct band gap materials for total range of the Sc concentration considered in this work. While the energy gaps of the RS- AlScN alloys are found to be extending from near ultraviolet to near infrared with a large (negative) bowing, the ones of the WZ- AlScN and ZB- AlScN alloys are determined to be varying in a small energy range around near ultraviolet with a small (negative) bowing.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3