Uncertainty and sensitivity analysis to complex systems

Author:

Zhu Yueying12,Wang Qiuping Alexandre13,Li Wei24,Cai Xu2

Affiliation:

1. IMMM, UMR CNRS 6283, Le Mans Université, 72085 Le Mans, France

2. Complexity Science Center & Institute of Particle Physics, Central China Normal University, 430079 Wuhan, China

3. HEI, Yncrea, 59014 Lille, France

4. Max-Planck Institute for Mathematics in the Sciences, Inselst. 22, 04103 Leipzig, Germany

Abstract

In the complexity modeling, variance decomposition technique is widely used for the quantification of the variation in the output variables explained by covariates. In this work, the satisfaction of sampling-based variance decomposition strategy (SVDS) is firstly testified in the implementation of an analytic method for uncertainty and sensitivity analysis (UASA) of complex systems. Results suggest that SVDS may overvalue the impacts from individual covariates alone but underestimate the effects from their interactions when the model under discussion involves the interaction effects of nonlinear problems of individual covariates. Following the phenomenon, a modification of SVDS is proposed to generate sensitivity measures that well coincide with the analytic method. The testified strategy, together with our proposed modification, is then employed to clarify the roles of infectious rate and recovered rate, as well as of their interaction, in the estimation of equilibrium state (ES) for both SIR and SIS models. Results demonstrate that infectious and recovered rates almost play the same roles less crucial than that acted by the initial susceptible individuals in the decision of ES for SIR model, accompanied by a fragile contribution from their interactions; while in SIS model, infectious rate is more robust than recovered rate, and their interaction effect is also non-ignorable.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3