Affiliation:
1. Department of Physics, National Institute of Technology Sikkim, Sikkim 737139, India
2. Department of Mathematics, National Institute of Technology Sikkim, Sikkim 737139, India
Abstract
During any unique crisis, panic sell-off leads to a massive stock market crash that may continue for more than a day, termed as mainshock. The effect of a mainshock in the form of aftershocks can be felt throughout the recovery phase of stock price. As the market remains in stress during recovery, any small perturbation leads to a relatively smaller aftershock. The duration of the recovery phase has been estimated using structural break analysis. We have carried out statistical analyses of 1987 stock market crash, 2008 financial crisis and 2020 COVID-19 pandemic considering the actual crash times of the mainshock and aftershocks. Earlier, such analyses were done considering absolute one-day return, which cannot capture a crash properly. The results show that the mainshock and aftershock in the stock market follow the Gutenberg–Richter (GR) power law. Further, we obtained higher [Formula: see text] value for the COVID-19 crash compared to the financial-crisis-2008 from the GR law. This implies that the recovery of stock price during COVID-19 may be faster than the financial-crisis-2008. The result is consistent with the present recovery of the market from the COVID-19 pandemic. The analysis shows that the high-magnitude aftershocks are rare, and low-magnitude aftershocks are frequent during the recovery phase. The analysis also shows that the inter-occurrence times of the aftershocks follow the generalized Pareto distribution, i.e. [Formula: see text], where [Formula: see text] and [Formula: see text] are constants and [Formula: see text] is the inter-occurrence time. This analysis may help investors to restructure their portfolio during a market crash.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献