First-principles study of hydrogen capacity in Li2TiO3 crystal

Author:

Li Yan-Wei1ORCID,Zhang Yong-Shuai1ORCID,Meng Shuai12ORCID,Yang Wen1ORCID,Li Kun12ORCID

Affiliation:

1. Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, P. R. China

2. School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, P. R. China

Abstract

Understanding the hydrogen (H) capacity, which represents the tritium capacity in Li2TiO3 crystal has become an important aspect of the tritium release process of nuclear fusion. In this work, a systematic density-functional-theory (DFT) study is performed to investigate the trapping and accumulation of H in Li2TiO3 crystal. In perfect crystal, the H adsorption properties are investigated and the maximum number of trapped H atoms are obtained. In the defect models, by calculating the trapping energy and Bader charge, we find that a Li vacancy can capture four H atoms while the capacity of a Ti vacancy is seven and then other H atoms tend to be trapped by interstitial sites outside the vacancy. Then the H capacity both inside and outside the vacancy in the defect models is studied and analyzed. According to our calculations, crystals containing a vacancy present stronger H trapping abilities than perfect crystals, especially for the crystal with a Ti vacancy. In addition, the increase of H atoms in the vacancy facilitates the formation of the neighboring vacancy so that more H atoms can be accommodated in the crystal with vacancy. Our results reveal the H capacity of different Li2TiO3 models, which provide theoretical support for related tritium release experiments.

Funder

the Fundamental Research Program of Shanxi Province

Science and Technology Innovation Teams of Shanxi Province

the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3