Modeling of Newtonian and non-Newtonian-based coolants for deployment in industrial length-scale shell and tube heat exchanger

Author:

Anitha S.1,Thomas Tiju23,Parthiban V.4,Pichumani M.5

Affiliation:

1. Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India

2. Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Chennai, Tamilnadu, India

3. DST Solar Energy Harnessing Center — An Energy Consortium, Indian Institute of Technology, Chennai, Tamilnadu, India

4. School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamilnadu, India

5. Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore Tamilnadu, India

Abstract

To evaluate the heat transfer performance (HTP) of hybrid nanofluids, numerical simulations are carried out in an industrial length single pass shell and tube heat exchanger. In shell, ISO VG 68 oil enters with [Formula: see text]C and with [Formula: see text]C, the coolant passes into the tube. CNT-[Formula: see text]/water and CNT-[Formula: see text]/sodium alginate (SA) are used as Newtonian and non-Newtonian hybrid nanofluid, respectively. The influence of base fluid and nanoparticles on thermal performance of heat exchanger is studied. The chosen nanoparticles are reliable to the industrial deployment. The current numerical procedure is validated with the earlier experimental results. Volume fraction of nanoparticles is optimized for an effective HTP of the heat exchanger. About 60% increment in heat transfer coefficient is observed when hybrid nanofluid is employed. By using Newtonian hybrid nanofluid, 50% improvement in Nusselt number is marked out. Effectiveness and heat transfer rate of heat exchanger are higher with the employment of Newtonian hybrid nanofluid. Results indicated that, even though Newtonian hybrid nanofluid shows higher thermal performance, non-Newtonian hybrid nanofluid is preferable for energy consumption point of view.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3