Affiliation:
1. People’s Liberation Army Strategic Support Force, Information Engineering University, Zhengzhou, Henan 450001, P. R. China
Abstract
Link prediction in temporal networks has always been a hot topic in both statistical physics and network science. Most existing works fail to consider the inner relationship between nodes, leading to poor prediction accuracy. Even though a wide range of realistic networks are temporal ones, few existing works investigated the properties of realistic and temporal networks. In this paper, we address the problem of abstracting individual attributes and propose a adaptive link prediction method for temporal networks based on [Formula: see text]-index to predict future links. The matching degree of nodes is first defined considering both the native influence and the secondary influence of local structure. Then a similarity index is designed using a decaying parameter to punish the snapshots with their occurring time. Experimental results on five realistic temporal networks observing consistent gains of 2–9% AUC in comparison to the best baseline in four networks show that our proposed method outperforms several benchmarks under two standard evaluation metrics: AUC and Ranking score. We also investigate the influence of the free parameter and the definition of matching degree on the prediction performance.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献