Affiliation:
1. College of Electrical and Control Engineering, North China University of Technology, Beijing, China
2. Department of Civil and Environmental Engineering, University of Washington, USA
Abstract
Since critical segments on a transportation network vary over time and are determined by the nature of traffic systems, the identification of critical segments is the basis for realizing area-wide traffic coordination control and regional traffic state optimization. For decades, the identification of critical segments of dynamic traffic flow networks has attracted wide attention. In recent years, some important advances have been made in the related research on the identification of critical segments using the theory of percolation which validates the impact of critical segments by increasing the speed value of critical segments. However, most of them failed to take into account highly correlated characteristics between adjacent segments, which causes identification results cannot be validated effectively and efficiently. In this paper, we improve the existing critical segments identification methods by considering the highly correlated characteristics. A verification method based on ego-networks is proposed that improves the ego-networks speed of critical segments to verify the accuracy of identification results. The experiment shows the method can verify the validity of critical segments recognition results more accurately.
Funder
Five-year Scientific and Technological Support Project
Big-Data Based Beijing Road Trac Congestion Reduction Decision Support
Innovation and Collaboration Capital Center for World Urban Transport Improvement
Basic Research Business Fee Project of Science and Technology Innovation Service Building
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献