A verification method for identifying critical segments considering highly correlated characteristics of traffic flow

Author:

Zhang Zundong12,Zhu Mengyao1,Ban Jeff2,Zhang Yifan1

Affiliation:

1. College of Electrical and Control Engineering, North China University of Technology, Beijing, China

2. Department of Civil and Environmental Engineering, University of Washington, USA

Abstract

Since critical segments on a transportation network vary over time and are determined by the nature of traffic systems, the identification of critical segments is the basis for realizing area-wide traffic coordination control and regional traffic state optimization. For decades, the identification of critical segments of dynamic traffic flow networks has attracted wide attention. In recent years, some important advances have been made in the related research on the identification of critical segments using the theory of percolation which validates the impact of critical segments by increasing the speed value of critical segments. However, most of them failed to take into account highly correlated characteristics between adjacent segments, which causes identification results cannot be validated effectively and efficiently. In this paper, we improve the existing critical segments identification methods by considering the highly correlated characteristics. A verification method based on ego-networks is proposed that improves the ego-networks speed of critical segments to verify the accuracy of identification results. The experiment shows the method can verify the validity of critical segments recognition results more accurately.

Funder

Five-year Scientific and Technological Support Project

Big-Data Based Beijing Road Trac Congestion Reduction Decision Support

Innovation and Collaboration Capital Center for World Urban Transport Improvement

Basic Research Business Fee Project of Science and Technology Innovation Service Building

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3