ELECTROPHORESIS OF TOPOLOGICALLY NONTRIVIAL MACROMOLECULES: MATHEMATICAL AND COMPUTATIONAL STUDIES
-
Published:1996-04
Issue:02
Volume:07
Page:217-271
-
ISSN:0129-1831
-
Container-title:International Journal of Modern Physics C
-
language:en
-
Short-container-title:Int. J. Mod. Phys. C
Affiliation:
1. Bioinformatics, HYSEQ Inc., 670 Almanor Avenue Sunnyvale, California 94086, USA
Abstract
Mathematical and numerical models for studying the electrophoresis of topologically nontrivial molecules in two and three dimensions are presented. The molecules are modeled as polygons residing on a square lattice and a cubic lattice whereas the electrophoretic media of obstacle network are simulated by removing vertices from the lattices at random. The dynamics of the polymeric molecules are modeled by configurational readjustments of segments of the polygons. Configurational readjustments arise from thermal fluctuations and they correspond to piecewise reptation in the simulations. A Metropolis algorithm is introduced to simulate these dynamics, and the algorithms are proven to be reversible and ergodic. Monte Carlo simulations of steady field random obstacle electrophoresis are performed and the results are presented.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献