Numerical investigation of the effect of temperature variation on heat transfer rate in a square cavity filled water-Al2O3 nanofluid with a hot circular cylinder in the center of the cavity

Author:

Enjilela Vali1,Soltani Elshan2,Ghadyani Mohsen3,Bagheri Rasul1

Affiliation:

1. Department of Mechanical Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran

2. Department of Mechanical Engineering, Takestan Branch, Islamic Azad University, Takestan, Iran

3. Department of Mechanical Engineering, Yadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran

Abstract

In this paper, the natural convection flow in a square cavity filled with nanofluid water-[Formula: see text] with a hot circular cylinder in the center of the cavity is numerically analyzed. All the walls are in lower temperatures than the circular cylinder. The Navier–Stokes and energy equations in the primitive variable form are discretized and solved by the finite element method (FEM). The effect of the volume fraction, the radius of the circular cylinder, the temperature and Rayleigh number is considered on the average Nusselt number. For the calculation of the viscosity coefficient and thermal conductivity coefficient of water-[Formula: see text] nanofluid, an experimental model is used which is the function of the volume fraction, temperature and nanoparticles diameter. This model is compared to the Brinkman model for viscosity and Maxwell model for thermal conductivity which are only the functions of volume fraction and are used by many researchers. The results show the experimental model leads to different results in comparison with the Brinkman model and Maxwell model, and indicate that the rate of the heat transfer can increase or decrease with the increase in volume fraction and temperature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3