Affiliation:
1. Institut für Werkstoffe, Technische Universität Braunschweig, Langer Kamp 8, 38106 Braunschweig, Germany
Abstract
We present a new multigrid method called neural multigrid which is based on joining multigrid ideas with concepts from neural nets. The main idea is to use the Greenbaum criterion as a cost functional for the neural net. The algorithm is able to learn efficient interpolation operators in the case of the ordered Laplace equation with only a very small critical slowing down and with a surprisingly small amount of work comparable to that of a Conjugate Gradient solver In the case of the two-dimensional Laplace equation with SU(2) gauge fields at β = 0 the learning exhibits critical slowing down with an exponent of about z≈0.4. The algorithm is able to find quite good interpolation operators in this case as well. Thereby it is proven that a practical true multigrid algorithm exists even for a gauge theory. An improved algorithm using dynamical blocks that will hopefully overcome the critical slowing down completely is sketched.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献