Particle shapes effects on Casson hybrid nanofluid flow over a cylinder with Cattaneo–Christov thermal model with Entropy optimization

Author:

Vijatha M.1,Bala Anki Reddy P.1

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India

Abstract

In this study, we investigate the effect of entropy generation on a Casson hybrid nanofluid over a stretching cylinder in the presence of linear thermal radiation and Cattaneo–Christov heat flux. We assumed [Formula: see text] and [Formula: see text] to be the nanoparticles suspended in the blood’s basic fluid for our model. Targeted drug delivery is one of the most proficient ways to diagnose and treat cancer. This is because attractive nanoparticles can be used as beneficial agents in the occurrence of both heat and an angled magnetic field. In addition, several form aspects have been taken into account. By making sure that the self-similarity transformations are accurate, the fundamental Partial Differential Equations (PDEs) are converted into Ordinary Differential Equations (ODEs). The Runge–Kutta fourth-order and firing approach are used to solve the ODEs. For the situations of cylinder and plate, homotopy perturbation method (HPM) and numerical method (NM) solutions on behalf of the nonlinear structure are obtained to compare one another. In this model, we compared the shapes of the sphere, the cylinder, the blade, the platelet and the lamina, which are all graphically represented. Additionally, the results are compared to those that have already been published and are found to be in great agreement. The performance of biological applications, particularly Radio-Frequency Identification (RFA), cancer therapy, MRI, tumor therapy and malaria disease, is improved by this kind of theoretical research.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3