NUMERICAL SOLUTION OF THE ACOUSTIC WAVE EQUATION AT THE LIMIT BETWEEN NEAR AND FAR FIELD PROPAGATION

Author:

STOLL ERICH12,DANGEL STEFAN12

Affiliation:

1. Remote Sensing Laboratories, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland

2. ADNR Technology Services Sagl, CH-5548 Minusio, Switzerland

Abstract

The acoustic wave equation is solved numerically for two and three-dimensional systems at the limit between near and far field propagation. Our results show that for large sound velocities, corresponding to wavelengths larger than the system, near field properties are dominant. When the near field conditions are no longer satisfied, standing waves close to the sound emitters and interference patterns between the near field and far field solutions appear. Our procedure is applied to sound sources, which broadcast coherent and continuous waves as well as to sources emitting bursts of incoherent and uncorrelated waves. Both cases can be used to simulate the spreading of low frequency seismic waves observed close to volcanoes and hydrocarbon reservoirs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3