Affiliation:
1. Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil
2. Departamento de Física, Universidade Estadual do Piauí, 64.002-150 Teresina, Piauí, Brazil
Abstract
When studying topological or dynamical properties of random scale-free networks, it is tacitly assumed that degree–degree correlations are not present. However, simple constraints, such as the absence of multiple edges and self-loops, can give rise to intrinsic correlations in these structures. In the same way that Fermionic correlations in thermodynamic systems are relevant only in the limit of low temperature, the intrinsic correlations in scale-free networks are relevant only when the extreme values for the degrees grow faster than the square root of the network size. In this situation, these correlations can significantly affect the dependence of the average degree of the nearest neighbors of a given vertex on this vertices degree. Here, we introduce an analytical approach that is capable to predict the functional form of this property. Moreover, our results indicate that random scale-free network models are not self-averaging, that is, the second moment of their degree distribution may vary orders of magnitude among different realizations. Finally, we argue that the intrinsic correlations investigated here may have profound impact on the critical properties of random scale-free networks.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献