The study of genetic information flux network properties in genetic algorithms

Author:

Wu Zhengping1,Xu Qiong1,Ni Gaosheng2,Yu Gaoming3

Affiliation:

1. College of Electrical Engineering and New Energy, China Three Gorges University, Hubei, Yichang, 443002, P. R. China

2. College of Foreign Languages, China Three Gorges University, Hubei, Yichang 443002, P. R. China

3. College of Petroleum Engineering, Yangtze University, Hubei, Wuhan 430100, P. R. China

Abstract

In this paper, an empirical analysis is done on the information flux network (IFN) statistical properties of genetic algorithms (GA) and the results suggest that the node degree distribution of IFN is scale-free when there is at least some selection pressure, and it has two branches as node degree is small. Increasing crossover, decreasing the mutation rate or decreasing the selective pressure will increase the average node degree, thus leading to the decrease of scaling exponent. These studies will be helpful in understanding the combination and distribution of excellent gene segments of the population in GA evolving, and will be useful in devising an efficient GA.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3