Viscoelastic initially stressed microbeam heated by an intense pulse laser via photo-thermoelasticity with two-phase lag

Author:

Abouelregal Ahmed E.12,Zakaria Kadry3,Sirwah Magdy A.3,Ahmad Hijaz45,Rashid Ali F.3

Affiliation:

1. Mathematics Department, College of Science and Arts, Jouf University, Al-Qurayyat, Saudi Arabia

2. Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

3. Mathematics Department, Faculty of Science, Tanta University, Egypt

4. Information Technology Application and Research Center, Istanbul Ticaret University, 34445, Istanbul, Turkey

5. Department of Mathematics, Faculty of Humanities and Social Sciences, Istanbul Ticaret University, 34445, Istanbul, Turkey

Abstract

This work aims to assess the response of viscoelastic Kelvin–Voigt microscale beams under initial stress. The microbeam is photostimulated by the light emitted by an intense picosecond pulsed laser. The photothermal elasticity model with dual-phase lags, the plasma wave equation and Euler–Bernoulli beam theory are utilized to construct the system equations governing the thermoelastic vibrations of microbeams. Using the Laplace transform technique, the problem is solved analytically and expressions are provided for the distributions of photothermal fields. Taking aluminum as a numerical example, the effect of the pulsed laser duration coefficient, viscoelasticity constants and initial stress on photothermal vibrations has been studied. In addition, a comparison has been made between different models of photo-thermoelasticity to validate the results of the current model. Photo-microdynamic systems might be monolithically integrated on aluminum microbeams using microsurface processing technology as a result of this research.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3