A general spammer indicator of rating systems uncovering rating preferences and bias

Author:

Zhou Jian1ORCID,Xu Rui-Qing1ORCID,Gu Liang-Liang2,Sun Hong-Liang1ORCID

Affiliation:

1. School of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China

2. Research Office, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China

Abstract

With the rapid development of e-commerce recently, massive spammers purposely distort the ranking of goods, which affects the market order and the fair competition of businesses seriously. Therefore, identifying such spammers is significant to rational decision making of customers. However, it is difficult to discriminate between normal users and malicious spammers on extremely large rating networks. In this paper, we propose a common indicator based on the historic rating records from spammers and normal users, which is widely applied to many existing methods. It is inspired by the idea that normal users have their preferences and rating bias shown in rating ladder, while spammers do not have such rating ladders in practice. Such an indicator is complement with other existing methods including Deviation-based Ranking (DR), Iterative Group-based Ranking (IGR) and Iterative Balance Ranking (IBR). Experimental study on three real rating networks shows that this indicator can significantly improve the accuracy of DR, IGR and IBR. To deal with malicious spammers, DR, IGR and IBR are improved by at least 9.38%, 2.90% and 2.53%, respectively. To deal with random spammers, DR, IGR and IBR are improved by at least by 5.52%, 17.12% and 32.24%, respectively.

Funder

National Natural Science Foundation of China

Young Scholar Programme from NUFE

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3