Entropy of the ensemble of acyclic graphs

Author:

Soares Edson A.1,Moreira André A.1

Affiliation:

1. Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil

Abstract

The structural phase transition in complex network models is known to yield knowledge relevant for several problems of practical application. Examples include resilience of artificial networks, dynamics of epidemic spreading, among others. The model of random graphs is probably the simplest model of complex networks, and the solution of this model falls into the universality class mean field percolation. In this work, we concentrate on a similar problem, namely, the structural phase transition in the ensemble of random acyclic graphs. It should be noted that several approaches to the problem of random graphs, such as generating functions or the Molloy–Reed criterion, rely on the fact that before the critical point, cycles should not be present in random graphs. In this way, up to the critical point our solution should produce results that are equivalent to these other methods. Our approach takes advantage of the fact that acyclic graphs allow for an exact combinatorial enumeration of the whole ensemble, what leads to an exact expression for the entropy of this system. With this definition of entropy we can determine the onset of the critical transition as well as the critical exponents associated with the transition. Our results are illustrated with Monte-Carlo results and are discussed within the context of general random graphs, as well as in comparison with another model of acyclic graphs.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3