Dynamisms of activation energy and convective Nield’s conditions on bidirectional flow of radiative Eyring–Powell nanofluid

Author:

Javed Tariq1,Faisal Muhammad2,Ahmad Iftikhar2

Affiliation:

1. Department of Mathematics and Statistics, Faculty of Basic and Applied Science, International Islamic University, Islamabad 44000, Pakistan

2. Department of Mathematics, Faculty of Sciences, University of Azad Jammu & Kashmir, Muzaffarabad 13100, Pakistan

Abstract

Current continuation describes the computational study concerning with the unsteady flow of Eyring–Powell magneto nanoliquid over a bidirectionally deformable surface. Transference of activation energy is used in the improvement of binary chemical reaction. Nonlinear significance of thermal radiation is also incorporated in the energy equation. Investigation has been carried out through convective Nield’s boundary restrictions. Firstly, useful combination of variables has been implemented to alter the governing PDEs into ODEs. Later on, Keller-Box approach has been adopted to obtain the numerical solution of the physical problem. Physical interpretations of obtained results are also described for temperature and mass concentration distributions through various graphs. Rate of heat transportation has been explained through tabular data for acceptable ranges of involved engineering parameters. It is detected that escalating amount of Brownian constraint provides a constant temperature distribution. It is also inspected through present investigation that escalating amounts of activation energy factor, thermophoresis parameter, radiation parameter, Biot number and temperature ratio parameter improve the concentration field. Moreover, the amount of heat transport has considerably improved by increasing the amounts of temperature controlling indices and Biot number. Convergence analysis and error estimations of the numerical solution are also presented through various mesh refinement levels of the computational domain. Finally, comparison benchmarks with the restricted cases have been presented for the validation of the results obtained through the present parametric investigation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3