CFD analysis of drop generation in cross-junction microchannel

Author:

Khalilzadeh Zeinab1,Fallah Keivan1,Alinejad Javad1,Rostamiyan Yasser1

Affiliation:

1. Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran

Abstract

The development of microfluidic devices, which handle small volumes of fluids for mechanical, chemical and medical purposes, is accelerating. Drop microfluidics is a booming field. This study aimed to attain a better understanding of drop generation in a cross-junction device. Hence, the generation of drops in the cross-junction microchannel was numerically and two-dimensionally simulated. For this purpose, the open-source code of Gerris was implemented. Also, the effect of Ca and We number on the drop generation process was evaluated. The AMR technique is utilized to simulate drop motion. Six distinct regimes are identified, namely, long alternating (LA), short alternating (SA), alternating with different sizes (ADS), small drops (SD), jetting (J) and parallel (P). In combination with (LA and SA) regimes, the size of one drop is larger than the hydraulic diameter and the other is smaller. In the large alternating regime, the length of the drops decreases when Weber numbers increase and the drop generation frequency increases as the We number increases. In each transition from one regime to another, the pinch-off location suddenly increases, and then in each regime, with the increment of the We number, the location of drop breakage decreases.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3