The experimental and numerical studies of formation and collapse processes of ventilated supercavitating flow

Author:

Kamali Hossein Ali1ORCID,Erfanian Mohammad-Reza1ORCID

Affiliation:

1. Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The aim of this paper is to investigate the ventilated cavitating flow behavior, through experimental and numerical methods. The experiments are performed for a test model placed in a water tunnel and a high-speed camera is used to image the formation and collapse of the supercavity. For the numerical simulations, Ansys CFX commercial software is employed to solve the Reynolds-averaged Navier–Stokes (RANS) equations and additional transport equation for the liquid volume fraction in the unsteady condition. Both the experimental observation and numerical prediction show a hysteresis behavior for ventilated supercavity in which the value of the air entrainment coefficient required to maintain the supercavity in the formation process is less than the amount required to form it. The good agreement observed between the numerical prediction and experimental data, revealed the accuracy and capability of the numerical scheme. Also, the numerical simulation shows that the variations in the supercavity length, in addition to the air entrainment, are a function of the air leakage regime from the closure region of supercavity.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3