Multi-message topic dissemination probabilistic model with memory attenuation based on Social–Messages Network

Author:

Yang Ruiqi12,Han Dingding12,Qian Jianghai3

Affiliation:

1. School of Information Science and Technology, Fudan University, Shanghai, P. R. China

2. School of Information Science and Technology, East China Normal University, Shanghai, P. R. China

3. School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, P. R. China

Abstract

Current researches give priority to the diffusion of single message, but the diffusion of multi-messages at the same time in the actual network also exists. The diverse correlation of the messages will influence each other in the diffusion. It should be taken into consideration. This paper works to make a definition to the framework of Social–Messages Network. Based on it, a multi-message topic dissemination probabilistic model with memory attenuation is put forward, which introduces the correlation among messages. We adopt a simple learning strategy to gain the diverse correlation of messages. Then, the numerical simulation is utilized to analyze the model, whilst the relationship of the model parameter with the scope of the topic diffusion and the spread speed are studied and analyzed. With the related discussion data on Twitter, an empirical study is made to the model and the diffusion progress of the message is anticipated, which suggested that the anticipation is fundamentally in line with the actual data, and the estimated value of our model is closer to the reality than the classic diffusion model. Study on the topic diffusion will be conducive to the understanding and the anticipation of the multi–messages spread.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3