Affiliation:
1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, P. R. China
Abstract
Gas–liquid two-phase flows are frequently encountered in chemical and nuclear industries. The study of gas–liquid flow structures is of great significance for understanding the mechanisms of the flow pattern transition. In this paper, a direct-image multi-electrode conductance sensor (DMCS) was used to detect the structure information of vertical gas–liquid flows. Recurrence plot (RP) and cost-based recurrence plot (CBRP) are validated using typical nonlinear systems, i.e. Lorenz system and Hénon map, and used to analyze the signals collected by the DMCS. The results indicate that the determinism (DET) derived from the CBRP is sensitive to flow pattern evolution, and can also demonstrate the internal differences in the same flow patterns.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City, China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献