Learning temporal-frequency features of physionet EEG signals using deep convolutional neural network

Author:

Sorkhi Maryam1,Jahed-Motlagh Mohammad Reza12,Minaei-Bidgoli Behrouz1,Reza Daliri Mohammad2

Affiliation:

1. School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

2. School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

Since EEG signals encode an individual’s intent of executing an action, scientists have extensively focused on this topic. Motor Imagery (MI) signals have been used by researchers to assistance disabled persons, for autonomous driving and even control devices such as wheelchairs. Therefore, accurate decoding of these signals is essential to develop a Brain–Computer interface (BCI) systems. Due to dynamic nature, low signal-to-noise ratio and complexity of EEG signals, EEG decoding is not simple task. Extracting temporal and spatial features from EEG is accessible via Convolution neural network (CNN). However, enhanced CNN models are required to learn the dynamic correlations existing in MI signals. It is found that good features are extracted via CNN in both deep and shallow models, which indicate that various levels related features can be mined. In this case, spatial patterns from multi-scaled data in different frequency bands are learnt at first and then the temporal and frequency band information from projected signals is extracted. Here, to make use of neural activity phenomena, the feature extraction process employed is based on Multi-scale FBCSP (MSFBCSP). In CNN, the envelope of each spatially filtered signal is extracted in time dimension by performing Hilbert transform. However, to access common morphologies, the convolutional operation across time is performed first and then another convolution layer across channels in the frequency band is used to represent the carried information in a more compact form. Moreover, Bayesian approach is used for mapping hyperparameters to a probability of score on the objective function. The prominent feature of the proposed network is the high capacity of preserving and utilizing the information encoded in frequency bands. Our proposed method significantly improves the efficiency of current classification method in specific dataset of the physionet. According to empirical evaluations, strong robustness and high decoding classification are two distinctive characteristics of our proposed work.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3