Orientation-dependent behaviors of H dissolution and diffusion near W surfaces: A first-principles study

Author:

Pan Guyue12,Zhang Yongsheng12,Li Yonggang12,Zhang Chuanguo1,Zhao Zhe13,Zeng Zhi12

Affiliation:

1. Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China

2. University of Science and Technology of China, Hefei 230026, P. R. China

3. School of Physics and Material Science, Anhui University, Hefei 230601, P. R. China

Abstract

The dissolution and diffusion behaviors of H in the four low-Miller-index W surfaces ((110), (112), (100) and (111)) are systematically studied by the density functional theory approach to understand the orientation dependence of the H bubble distribution on surface. The results show that H accumulation on surface is influenced by H diffusion barrier as well as vacancy and H formation. The barriers of diffusion towards surfaces are larger than that in bulk. It indicates that H is prone to diffuse into the deep in bulk once H dissolves in surface. H is preferred to accumulate on the W(111) surface due to the lower formation energies of vacancy and H comparing to that in bulk. However, W(110) is the resistant surface for forming H bubble due to the higher formation energies of vacancy and H. The results are helpful for understanding the orientation dependence of surface damages on W surface and designing new plasma-facing materials.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3