Affiliation:
1. Department of Physics, University of Bologna, and INFN Bologna, Viale Berti–Pichat 6/2, 40127 Bologna, Italy
2. Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7, 40127, Bologna, Italy
Abstract
The classification of tumoral masses and normal breast tissue is targeted. A mass detection algorithm which does not refer explicitly to shape, border, size, contrast or texture of mammographic suspicious regions is evaluated. In the present approach, classification features are embodied by the image representation used to encode suspicious regions. Classification is performed by means of a support vector machine (SVM) classifier. To investigate whether improvements can be achieved with respect to a previously proposed overcomplete wavelet image representation, a pixel and a discrete wavelet image representations are developed and tested. Evaluation is performed by extracting 6000 suspicious regions from the digital database for screening mammography (DDSM) collected by the University of South Florida (USF). More specifically, 1000 regions representing biopsy-proven tumoral masses (either benign or malignant) and 5000 regions representing normal breast tissue are extracted. Results demonstrate very high performance levels. The area Az under the receiver operating characteristic (ROC) curve reaches values of 0.973 ± 0.002, 0.948 ± 0.004 and 0.956 ± 0.003 for the pixel, discrete wavelet and overcomplete wavelet image representations, respectively. In particular, the improvement in the Az value with the pixel image representation is statistically significant compared to that obtained with the discrete wavelet and overcomplete wavelet image representations (two-tailed p-value < 0.0001). Additionally, 90% true positive fraction (TPF) values are achieved with false positive fraction (FPF) values of 6%, 11% and 7%, respectively.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献