Numerical simulation of blood flow in intracranial aneurysms treated by endovascular Woven EndoBridge technique

Author:

Sharifi Alireza1,Deyranlou Amin2,Moghadam Mohammad Charjouei3,Niazmand Hamid4

Affiliation:

1. Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523, USA

2. School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, UK

3. Department of Mechanical Engineering, York University, Toronto, ON, Canada

4. Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Over the past few decades, different therapeutic methods for the treatment of intracranial aneurysms have been developed. During recent years, novel standalone intrasaccular Woven EndoBridge (WEB) technique has paved the way for efficient therapy and reduced some deficiencies in prior procedures. Blood hemodynamics plays a crucial role in occurrence and perpetuating of aneurysm; therefore, understanding of relevant parameters can lead to a better treatment and evolution of design. Objectively, this paper has established the first mathematical framework to explore hemodynamic parameters for WEB-treated saccular aneurysms by employing Computational Fluid Dynamics (CFD). Two ideal models of artery — one is suffered by a bifurcation aneurysm at Basilar Artery (BA) and another Posterior Cerebral Artery (PCA) aneurysm — are selected. Simulations are performed for an untreated and three WEB-treated aneurysms by Dual Layer (DL), Single Layer (SL) and Single Layer Sphere (SLS) WEBs. Results demonstrate that, generally, the WEB reduces flow intrusion and circulation inside the aneurysm sac, which leads to lowering WSS; however, the infiltrated flow to the WEB causes slight increase in intrasaccular pressure. Moreover, the numerical results show that the WEB DL reduces velocity and WSS, and elevates pressure inside the sac more than the WEBs SL and SLS. Among the explored WEB models (DL, SL and SLS), by assuming thorough binding at the aneurysm neck, the WEB DL demonstrates much efficient performance in flow diversion from the aneurysm, while despite the different structure of WEBs SL and SLS, they perform similarly.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3