IDENTIFYING CO-REGULATING MICRORNA GROUPS

Author:

AN JIYUAN1,CHOI KWOK PUI2,WELLS CHRISTINE A.1,CHEN YI-PING PHOEBE3

Affiliation:

1. The National Centre for Adult Stem Cell Research, The Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, QLD, 4111, Australia

2. Department of Statistics and Applied Probability, National University of Singapore, Singapore

3. Faculty of Science and Technology, Deakin University, Australia

Abstract

Background: Current miRNA target prediction tools have the common problem that their false positive rate is high. This renders identification of co-regulating groups of miRNAs and target genes unreliable. In this study, we describe a procedure to identify highly probable co-regulating miRNAs and the corresponding co-regulated gene groups. Our procedure involves a sequence of statistical tests: (1) identify genes that are highly probable miRNA targets; (2) determine for each such gene, the minimum number of miRNAs that co-regulate it with high probability; (3) find, for each such gene, the combination of the determined minimum size of miRNAs that co-regulate it with the lowest p-value; and (4) discover for each such combination of miRNAs, the group of genes that are co-regulated by these miRNAs with the lowest p-value computed based on GO term annotations of the genes. Results: Our method identifies 4, 3 and 2-term miRNA groups that co-regulate gene groups of size at least 3 in human. Our result suggests some interesting hypothesis on the functional role of several miRNAs through a "guilt by association" reasoning. For example, miR-130, miR-19 and miR-101 are known neurodegenerative diseases associated miRNAs. Our 3-term miRNA table shows that miR-130/19/101 form a co-regulating group of rank 22 (p-value =1.16 × 10-2). Since miR-144 is co-regulating with miR-130, miR-19 and miR-101 of rank 4 (p-value = 1.16 × 10-2) in our 4-term miRNA table, this suggests hsa-miR-144 may be neurodegenerative diseases related miRNA. Conclusions: This work identifies highly probable co-regulating miRNAs, which are refined from the prediction by computational tools using (1) signal-to-noise ratio to get high accurate regulating miRNAs for every gene, and (2) Gene Ontology to obtain functional related co-regulating miRNA groups. Our result has partly been supported by biological experiments. Based on prediction by TargetScanS, we found highly probable target gene groups in the Supplementary Information. This result might help biologists to find small set of miRNAs for genes of interest rather than huge amount of miRNA set. Supplementary Information:.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3