IN SILICO SCREENING OF PROTEIN–PROTEIN INTERACTIONS WITH ALL-TO-ALL RIGID DOCKING AND CLUSTERING: AN APPLICATION TO PATHWAY ANALYSIS

Author:

MATSUZAKI YURI1,MATSUZAKI YUSUKE1,SATO TOSHIYUKI2,AKIYAMA YUTAKA1

Affiliation:

1. Department of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2-12-1-W8-76, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

2. Mizuho Information and Research Institute, 2-3, Kanda-Nishikicho, Chiyoda-ku, Tokyo 101-8443, Japan

Abstract

We propose a computational screening system of protein–protein interactions using tertiary structure data. Our system combines all-to-all protein docking and clustering to find interacting protein pairs. We tuned our prediction system by applying various parameters and clustering algorithms and succeeded in outperforming previous methods. This method was also applied to a biological pathway estimation problem to show its use in network level analysis. The structural data were collected from the Protein Data Bank, PDB. Then all-to-all docking among target protein structures was conducted using a conventional protein–protein docking software package, ZDOCK. The highest-ranked 2000 decoys were clustered based on structural similarity among the predicted docking forms. The features of generated clusters were analyzed to estimate the biological relevance of protein–protein interactions. Our system achieves a best F-measure value of 0.43 when applied to a subset of general protein–protein docking benchmark data. The same system was applied to protein data in a bacterial chemotaxis pathway, utilizing essentially the same parameter set as the benchmark data. We obtained 0.45 for the F-measure value. The proposed approach to computational PPI detection is a promising methodology for mediating between structural studies and systems biology by utilizing cumulative protein structure data for pathway analysis.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3