EdClust: A heuristic sequence clustering method with higher sensitivity

Author:

Cao Ming12,Peng Qinke1,Wei Ze-Gang3,Liu Fei3,Hou Yi-Fan3

Affiliation:

1. Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, 710049, P. R. China

2. School of Mathematics and Statistics, Shaanxi Xueqian Normal University, Xi’an, 710100, P. R. China

3. Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, P. R. China

Abstract

The development of high-throughput technologies has produced increasing amounts of sequence data and an increasing need for efficient clustering algorithms that can process massive volumes of sequencing data for downstream analysis. Heuristic clustering methods are widely applied for sequence clustering because of their low computational complexity. Although numerous heuristic clustering methods have been developed, they suffer from two limitations: overestimation of inferred clusters and low clustering sensitivity. To address these issues, we present a new sequence clustering method (edClust) based on Edlib, a C/C[Formula: see text] library for fast, exact semi-global sequence alignment to group similar sequences. The new method edClust was tested on three large-scale sequence databases, and we compared edClust to several classic heuristic clustering methods, such as UCLUST, CD-HIT, and VSEARCH. Evaluations based on the metrics of cluster number and seed sensitivity (SS) demonstrate that edClust can produce fewer clusters than other methods and that its SS is higher than that of other methods. The source codes of edClust are available from https://github.com/zhang134/EdClust.git under the GNU GPL license.

Funder

National Natural Science Foundation of China

Shaanxi Provincial Science and Technology Department

Education Department of Shaanxi Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of methods for biological sequence clustering;IEEE/ACM Transactions on Computational Biology and Bioinformatics;2023

2. kngMap: Sensitive and Fast Mapping Algorithm for Noisy Long Reads Based on the K-Mer Neighborhood Graph;Frontiers in Genetics;2022-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3