PPiClust: EFFICIENT CLUSTERING OF 3D PROTEIN–PROTEIN INTERACTION INTERFACES

Author:

AUNG ZEYAR1,TAN SOON-HENG1,NG SEE-KIONG1,TAN KIAN-LEE2

Affiliation:

1. Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore

2. School of Computing, National University of Singapore, Law Link, Singapore 117590, Singapore

Abstract

The biological mechanisms through which proteins interact with one another are best revealed by studying the structural interfaces between interacting proteins. Protein–protein interfaces can be extracted from three-dimensional (3D) structural data of protein complexes and then clustered to derive biological insights. However, conventional protein interface clustering methods lack computational scalability and statistical support. In this work, we present a new method named "PPiClust" to systematically encode, cluster, and analyze similar 3D interface patterns in protein complexes efficiently. Experimental results showed that our method is effective in discovering visually consistent and statistically significant clusters of interfaces, and at the same time sufficiently time-efficient to be performed on a single computer. The interface clusters are also useful for uncovering the structural basis of protein interactions. Analysis of the resulting interface clusters revealed groups of structurally diverse proteins having similar interface patterns. We also found, in some of the interface clusters, the presence of well-known linear binding motifs which were noncontiguous in the primary sequences. These results suggest that PPiClust can discover not only statistically significant, but also biologically significant, protein interface clusters from protein complex structural data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3