IDENTIFICATION OF FUNCTIONAL MODULES IN A PPI NETWORK BY BOUNDED DIAMETER CLUSTERING

Author:

SOHAEE NASSIM1,FORST CHRISTIAN V.1

Affiliation:

1. Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9066, USA

Abstract

Dense subgraphs of Protein–Protein Interaction (PPI) graphs are assumed to be potential functional modules and play an important role in inferring the functional behavior of proteins. Increasing amount of available PPI data implies a fast, accurate approach of biological complex identification. Therefore, there are different models and algorithms in identifying functional modules. This paper describes a new graph theoretic clustering algorithm that detects densely connected regions in a large PPI graph. The method is based on finding bounded diameter subgraphs around a seed node. The algorithm has the advantage of being very simple and efficient when compared with other graph clustering methods. This algorithm is tested on the yeast PPI graph and the results are compared with MCL, Core-Attachment, and MCODE algorithms.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Density-Based Algorithm for Data Clustering;International Journal on Artificial Intelligence Tools;2017-08

2. AN INTRODUCTION TO SOME NEW RESULTS IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY;Journal of Bioinformatics and Computational Biology;2013-04

3. AN INTRODUCTION TO SOME NEW PAPERS ON PROTEIN COMPLEX PREDICTION, RNA BLOCK ALIGNMENT, DE NOVO PEPTIDE SEQUENCING, METAGENOMIC BINNING, AND OTHER RESULTS;Journal of Bioinformatics and Computational Biology;2010-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3