EDeepSSP: Explainable deep neural networks for exact splice sites prediction

Author:

Amilpur Santhosh1ORCID,Bhukya Raju1

Affiliation:

1. Computer Science and Engineering, National Institute of Technology Warangal, Warangal, Telangana 506004, India

Abstract

Splice site prediction is crucial for understanding underlying gene regulation, gene function for better genome annotation. Many computational methods exist for recognizing the splice sites. Although most of the methods achieve a competent performance, their interpretability remains challenging. Moreover, all traditional machine learning methods manually extract features, which is tedious job. To address these challenges, we propose a deep learning-based approach (EDeepSSP) that employs convolutional neural networks (CNNs) architecture for automatic feature extraction and effectively predicts splice sites. Our model, EDeepSSP, divulges the opaque nature of CNN by extracting significant motifs and explains why these motifs are vital for predicting splice sites. In this study, experiments have been conducted on six benchmark acceptors and donor datasets of humans, cress, and fly. The results show that EDeepSSP has outperformed many state-of-the-art approaches. EDeepSSP achieves the highest area under the receiver operating characteristic curve (AUC_ROC) and area under the precision-recall curve (AUC_PR) of 99.32% and 99.26% on human donor datasets, respectively. We also analyze various filter activities, feature activations, and extracted significant motifs responsible for the splice site prediction. Further, we validate the learned motifs of our model against known motifs of JASPAR splice site database.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3