IntaRNAhelix-composing RNA–RNA interactions from stable inter-molecular helices boosts bacterial sRNA target prediction

Author:

Gelhausen Rick1ORCID,Will Sebastian2,Hofacker Ivo L.2,Backofen Rolf13,Raden Martin1

Affiliation:

1. Bioinformatics Group, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany

2. Institute for Theoretical Chemistry, University of Vienna, Waehringer Strasse 17, 1090 Wien, Austria

3. Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany

Abstract

Efficient computational tools for the identification of putative target RNAs regulated by prokaryotic sRNAs rely on thermodynamic models of RNA secondary structures. While they typically predict RNA–RNA interaction complexes accurately, they yield many highly-ranked false positives in target screens. One obvious source of this low specificity appears to be the disability of current secondary-structure-based models to reflect steric constraints, which nevertheless govern the kinetic formation of RNA–RNA interactions. For example, often — even thermodynamically favorable — extensions of short initial kissing hairpin interactions are kinetically prohibited, since this would require unwinding of intra-molecular helices as well as sterically impossible bending of the interaction helix. Another source is the consideration of instable and thus unlikely subinteractions that enable better scoring of longer interactions. In consequence, the efficient prediction methods that do not consider such effects show a high false positive rate. To increase the prediction accuracy we devise IntaRNAhelix, a dynamic programming algorithm that length-restricts the runs of consecutive inter-molecular base pairs (perfect canonical stackings), which we hypothesize to implicitly model the steric and kinetic effects. The novel method is implemented by extending the state-of-the-art tool IntaRNA. Our comprehensive bacterial sRNA target prediction benchmark demonstrates significant improvements of the prediction accuracy and enables more than 40-times faster computations. These results indicate — supporting our hypothesis — that stable helix composition increases the accuracy of interaction prediction models compared to the current state-of-the-art approach.

Funder

Deutsche Forschungsgemeinschaft

Austrian Science Fund

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3