Meta-analysis of transcriptome data identified TGTCNN motif variants associated with the response to plant hormone auxin in Arabidopsis thaliana L.

Author:

Zemlyanskaya Elena V.12,Wiebe Daniil S.12,Omelyanchuk Nadezhda A.12,Levitsky Victor G.12,Mironova Victoria V.12

Affiliation:

1. Department for Systems Biology, Institute of Cytology and Genetics SB RAS, 10 Lavrentyev Ave., Novosibirsk 630090, Russia

2. Laboratory of Computational Transcriptomics and Evolutionary Bioinformatics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia

Abstract

Auxin is the major regulator of plant growth and development. It regulates gene expression via a family of transcription factors (ARFs) that bind to auxin responsive elements (AuxREs) in the gene promoters. The canonical AuxREs found in regulatory regions of many auxin responsive genes contain the TGTCTC core motif, whereas ARF binding site is a degenerate TGTCNN with TGTCGG strongly preferred. Thereby two questions arise: which TGTCNN variants are functional AuxRE cores and whether different TGTCNN variants have distinct functional roles? In this study, we performed meta-analysis of microarray data to reveal TGTCNN variants essential for auxin response and to characterize their functional features. Our results indicate that four TGTCNN motifs (TGTCTC, TGTCCC, TGTCGG, and TGTCTG) are associated with auxin up-regulation and two (TGTCGG, TGTCAT) with auxin down-regulation, but to a lesser extent. The genes having some of these motifs in their regulatory regions showed time-specific auxin response. Functional annotation of auxin up- and down-regulated genes also revealed GO terms specific for the auxin-regulated genes with certain TGTCNN variants in their promoters. Our results provide an idea that various TGTCNN motifs may play distinct roles in the auxin regulation of gene expression.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3