A CHEMICAL GROUP GRAPH REPRESENTATION FOR EFFICIENT HIGH-THROUGHPUT ANALYSIS OF ATOMISTIC PROTEIN SIMULATIONS

Author:

BENSON NOAH C.1,DAGGETT VALERIE2

Affiliation:

1. Division of Biomedical and Health Informatics, University of Washington, Seattle, WA 98195-7240, USA

2. Department of Bioengineering, Box 355013, University of Washington, Seattle, WA 98195-5013, USA

Abstract

Graphs are rapidly becoming a powerful and ubiquitous tool for the analysis of protein structure and for event detection in dynamical protein systems. Despite their rise in popularity, however, the graph representations employed to date have shared certain features and parameters that have not been thoroughly investigated. Here, we examine and compare variations on the construction of graph nodes and graph edges. We propose a graph representation based on chemical groups of similar atoms within a protein rather than residues or secondary structure and find that even very simple analyses using this representation form a powerful event detection system with significant advantages over residue-based graph representations. We additionally compare graph edges based on probability of contact to graph edges based on contact strength and analyses of the entire graph structure to an alternative and more computationally tractable node-based analysis. We develop the simplest useful technique for analyzing protein simulations based on these comparisons and use it to shed light on the speed with which static protein structures adjust to a solvated environment at room temperature in simulation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3