RECOGNITION OF PROTEIN FUNCTION USING THE LOCAL SIMILARITY

Author:

ALEXANDROV KIRILL1,SOBOLEV BORIS1,FILIMONOV DMITRY1,POROIKOV VLADIMIR1

Affiliation:

1. Laboratory for Structure-Function Based Drug Design, Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Pogodinskaya Str. 10, Moscow 119121, Russia

Abstract

The functional annotation of amino acid sequences is one of the most important problems in bioinformatics. Different programs have been successfully applied for recognition of some functional classes; nevertheless, many functional groups still cannot be predicted with the required accuracy. We developed a new method for protein function recognition using the original approach of sequence description. Each sequence of the training set is compared with the query sequence, and the local similarity scores are calculated for the query sequence positions and used as input data for the original classifier. The method was tested using leave-one-out cross-validation for three data sets covering 58 enzyme classes. Two tested sets including noncrossing functional classes were recognized with high accuracy at various levels of classification hierarchy. The majority of these classes were predicted with 100% accuracy, showing a prediction ability comparable with the HMMer method and an accuracy superior to the SVM-Prot program. When the tested set was composed of intersected classes of ligand specificity, the prediction accuracy was less; however, the accuracy increased as the size of the predicted class expanded. The proposed method can be used for both predicting protein functional class and selecting the functionally significant sites in a sequence.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3